

Lakshya Zero Dumpsite: India's Drive to Eliminate City Dumpsites Under Swachh Bharat Mission

January 31, 2026

Key Takeaways

- India is targeting “**Zero Dumpsites**” through the Dumpsite Remediation Accelerator Programme.
- **Over 61% of legacy waste has already been processed.** The programme prioritises 214 high-impact sites containing nearly 80% of the remaining waste.
- Remediated waste is **repurposed into resources** such as road-building material, filling of low-lying areas, recyclables, and Refuse-Derived Fuel.
- Once dumpsites are remediated, **cities benefit from cleaner air, safer groundwater, reduced fires, and reclaimed land for** infrastructure or developing green cover.

Introduction

India has seen steady progress in cleanliness over the past few years. Initiatives under the Swachh Bharat Mission have strengthened sanitation and waste management systems across cities, laying the foundation for cleaner urban spaces.

Building on this foundation, efforts are now focused on remediating legacy waste dumpsites. These are large accumulations of waste formed over many years. Eliminating these dumpsites represents the next phase of India's urban cleanliness efforts. To accelerate this work, the Government of India launched the Dumpsite Remediation Accelerator Programme (DRAP) in November 2025, with the objective of achieving “**Lakshya: Zero Dumpsites**” by **October 2026**, with most dumpsites targeted for clearance within this timeframe.

Legacy Dumpsites: Current Situation

A dumpsite refers to land used by Urban Local Bodies for the disposal of municipal solid waste. Often this waste is accumulated over decades through unscientific disposal. When waste is disposed of in an open dumpsite, it adversely affects the surrounding environment by contaminating groundwater and soil, degrading air quality, and releasing methane, a highly potent greenhouse gas. Such dumpsites also pose fire hazards, attract disease-carrying vectors, and emit toxic fumes, leading to long-term health risks for nearby communities.

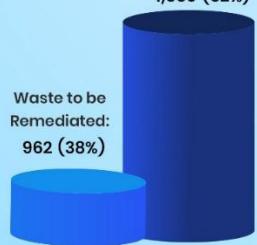
Legacy Dumpsite Remediation is the process of **scientifically cleaning up the old legacy waste dumpsites** while utilising inert & C&D waste for road construction and combustible fraction for energy generation.

Approximately **2,479 dumpsites** have been identified across the country, primarily those containing **legacy waste of 1,000 tonnes or more**. These sites together contain an estimated **~25 crore metric tonnes of accumulated waste**, spread across nearly **15,000 acres** of land. The scale of legacy waste is compounded by rising urban waste generation. Cities currently produce nearly **1,62,000 tons of municipal solid waste each day**, and total waste generation is projected to increase to **165 million tonnes by 2030** and **436 million tonnes by 2050**. In the absence of timely remediation and scientific processing, greenhouse gas emissions from the municipal solid waste sector could rise to **41.09 million tonnes of CO₂-equivalent** by 2030.

Currently, remediation is underway at 1,428 dumpsites across the country. Over 62% of legacy waste has already been processed. Under the **Dumpsite Remediation Accelerator Programme (DRAP)**, 214 dumpsites have been identified as high-impact sites because they together contain nearly 80 percent of India's remaining legacy waste. These sites, spread across **30 States & UTs covering 200 Urban Local Bodies**, account for approximately 8.6 crore metric tonnes of accumulated waste and have therefore been prioritised for accelerated remediation. The approach to addressing legacy dumpsites follows a double-pronged strategy to remove old dumpsites and prevent new ones by setting up waste processing facilities.

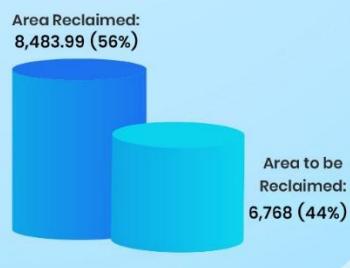
In 2025, **459 dumpsites** across **438 cities in 26 States** achieved complete remediation, with **183 lakh metric tonnes (LMT)** of legacy waste remediated. This adds to a cumulative total of **1,138 dumpsites** fully remediated across **1,048 cities in 29 States**, with **877 LMT of legacy waste** remediated overall. Alongside the remediation of existing dumpsites, the Government will ensure that **no new dumpsites are created**.

India's Legacy Dumpsites: Current Remediation Status


(Primarily dumpsites having legacy waste ≥ 1000 Tonne)

Legacy Waste Qty: 2,511*

Remediated Waste Qty:
1,550 (62%)


Waste to be
Remediated:
962 (38%)

Area: 15,252.37**

Area Reclaimed:
8,483.99 (56%)

Area to be
Reclaimed:
6,768 (44%)

* Waste Qty in Lakh Tonne

** Area in Acre

Source: Swachh Bharat Mission Dashboard

*Date as of 20 January 2026

Alongside remediation, the programme emphasizes preventing the creation of new dumpsites through scientific processing of all fresh waste. Land reclaimed from **remediation will be prioritised for Solid Waste Management (SWM)** infrastructure or developing green cover as a preference.

Urban Waste: From Swachh Bharat to Mission Zero

Over the past decade, India has transformed its sanitation landscape through the Swachh Bharat Mission (SBM), enhancing waste collection, cleanliness, and public health nationwide. The mission has brought awareness, built over 100 million toilets, and strengthened systems for cleaner, safer communities. In continuation, the government launched **SBM-Urban 2.0 in 2021**, deepening the progress further by expanding solid-waste processing capacity, promoting segregation at source, and strengthening scientific waste management systems.

SWACHH BHARAT MISSION-URBAN 2.0

Swachh Bharat Mission-Urban 2.0 (SBM-U 2.0), launched in 2021, is a five-year mission to make cities “garbage-free” by 2026 through legacy dumpsite remediation, 100% source segregation, and scientific waste management.

Key Objectives:

100% door-to-door collection of segregated waste

100% scientific processing and safe landfill disposal

Remediation of all legacy dumpsites and conversion into green zones

Safe transport, treatment and disposal of all used water, including fecal sludge, without polluting soil or water bodies

Source: MoHUA

Framework: The 5P Model

The DRAP is built on the **5P Framework** of Bharat Mission-Urban 2.0, launched in 2021, including **Political Leadership, Public Finance, Partnerships, People's Participation, and Project Management**, ensuring every stage of dumpsite remediation, including planning and execution, remains accountable, adequately financed, partnership-driven, community-oriented, and monitored.

DRAP's 5P Strategy for Zero Dumpsites

Political Leadership: Under DRAP, senior political and administrative leaders play a direct role in accelerating remediation by **adopting** dumpsites. This approach strengthens top-level supervision, supports timely decision-making, and helps resolve on-ground challenges more efficiently.

One such example is Delhi's 70-acre **Bhalswa dumpsite**, adopted by Union Minister **Manohar Lal**. Between **17 September and 6 November 2025**, Bhalswa remediated **4,79,500 MT** of legacy waste. As part of the ongoing transformation, **25 acres** of the site have been remediated. Of this, **5 acres have been developed with bamboo plantations**, while the remaining **20 acres are being prepared for sanitation-related activities and processing infrastructure**.

Public Finance: Provides enhanced financial assistance to cities with substantial legacy waste loads. In addition **to** the funds given under SBM-U 2.0. Financial support includes:

- **Central Financial Assistance (CFA)** calculated at **₹550 per tonne** of legacy waste.
- Disbursement categories of **25%, 33%, or 50%** of the project cost, depending on the city type.
- Funding available not only for legacy waste remediation but also for **processing fresh waste**, ensuring that **no new dumpsites are created**.
- Projects worth **₹6,700 crore** had already been approved for the 214 targeted sites.

Partnerships: Collaboration with institutions to ensure that remediation activities progress efficiently and at scale. The programme promotes partnerships with:

- **Corporate and PSU partners** for financial contributions, logistical support, disposal pathways, and technology integration.
- **State PWDs, State Highways Departments, and NHAI** to utilise large quantities of **inert waste** for road construction and infrastructure.
- **Cement plants, waste-to-energy facilities, and industrial units** to absorb and process **Refuse-Derived Fuel (RDF)** generated from remediation.
- **Technical experts and engineering partners** for biomining solutions, site assessments, engineering designs, and scientific validation.
- **NGOs and civil society organisations** for community engagement, worker mobilisation, awareness campaigns, and health and safety activities for **Safai Mitras** and site workers.

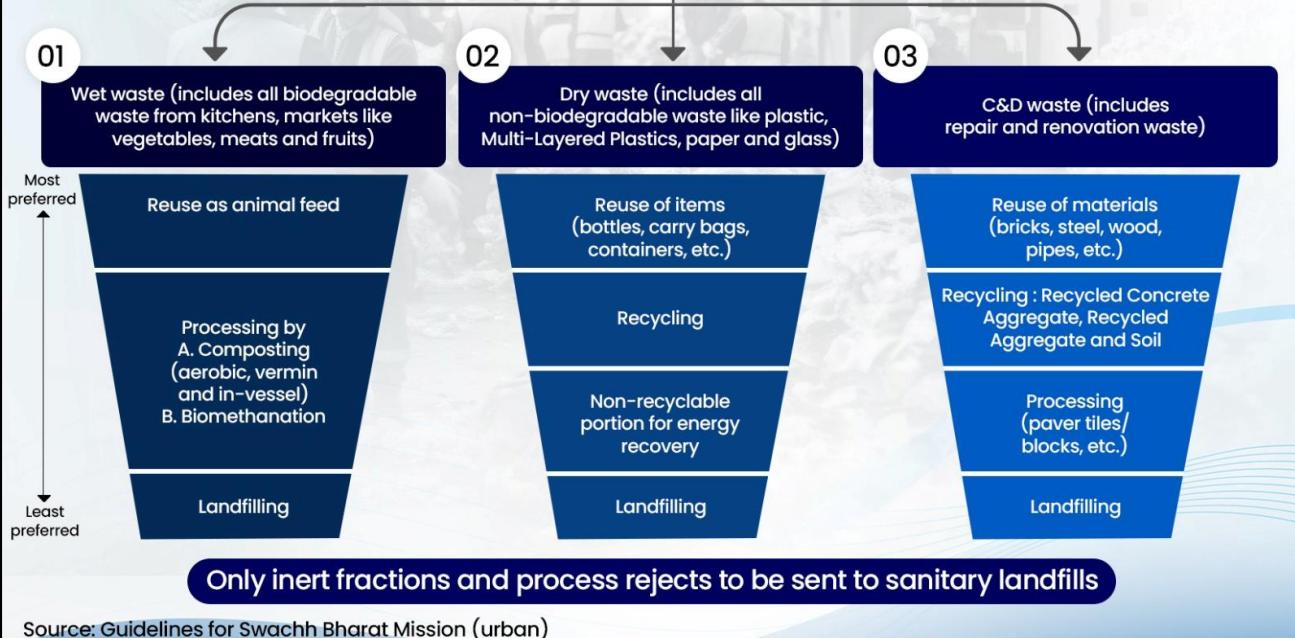
People's Participation: Communities living near dumpsites face the direct impact of fumes, fires, odour, and disease. The programme engages communities living near dumpsites through targeted awareness and participation initiatives, including:

- Work with **NGOs** to organise health camps, awareness drives, and information campaigns.
- Promote safe working conditions for **Safai Mitras** and remediation workers.
- Use site-specific branding to create **local pride**, visibility, and ownership.

By amplifying the voices of the most impacted populations, DRAP aims to make dumpsite remediation not just a technical exercise but a socially inclusive transformation.

Project Management: The backbone of DRAP is a strong, technology-enabled project management system that reduces delays and increases accountability.

Dumpsite to Resource: Where Waste Goes After Remediation

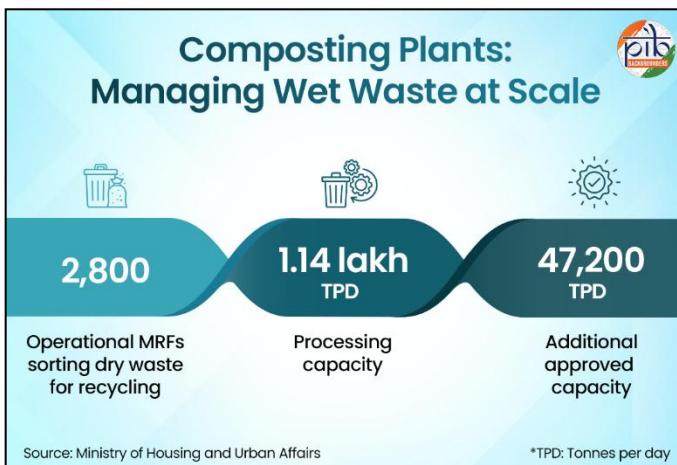

Legacy waste is biomined, a process in which old waste is scientifically stabilised and separated into different usable parts, reducing pressure on landfills and ensuring that nothing returns to the dumpsite. Each recovered material is sent for appropriate reuse or processing, following the broader circular-economy approach, which aims to use resources sustainably by limiting raw-material consumption and waste generation through principles such as reducing, reusing, recycling, refurbishing, recovering, and repairing.

Biomining means **digging out old waste from a dumpsite and cleaning it up in a scientific way**. After the waste is excavated, it is spread out in long rows and allowed to **breathe in air** while special microbes (bio-cultures) speed up natural decomposition. Once the waste becomes stable and dry, it is **screened and separated** into different categories such as soil-like fines, bricks, stones, metals, plastic, clothes, and other recyclables. Each of these materials is then **sent for proper reuse**, for example, for **road construction, recycling, co-processing in industries, or composting**, depending on its type. Biomining converts a **mixed garbage hill into usable resources**, ensuring that **very little is left to go to a landfill**.

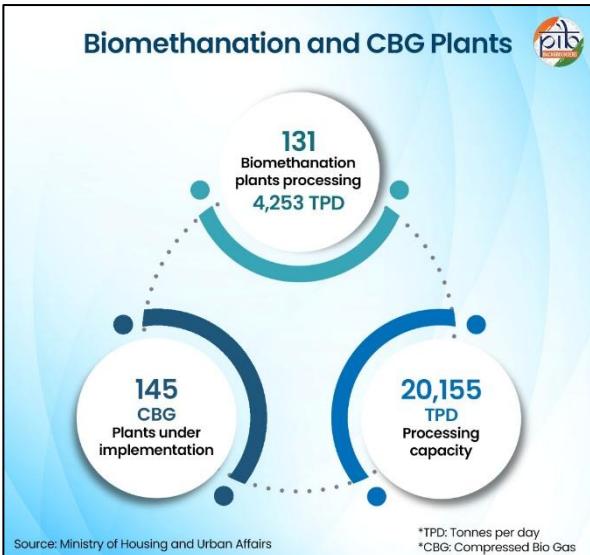
Hierarchy of municipal waste management

Segregation of waste at source

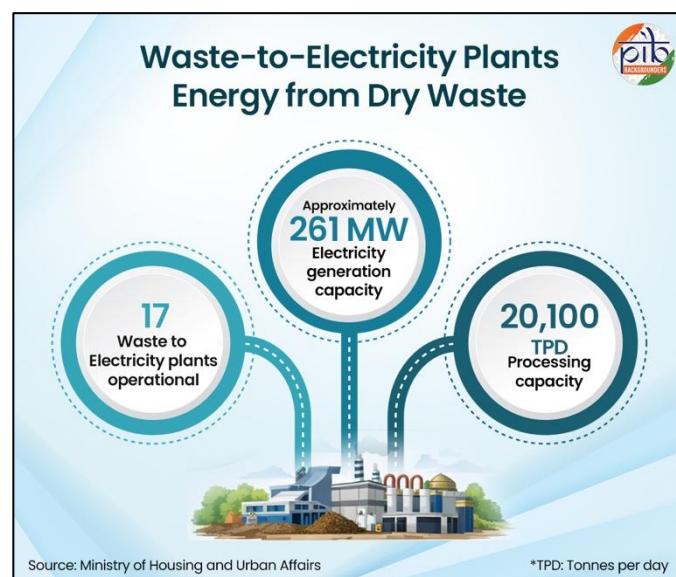
Source: Guidelines for Swachh Bharat Mission (urban)


As part of dumpsite remediation, legacy waste is scientifically segregated into different material streams. The following section outlines the end-use pathways adopted for each category of waste.

- Inert & Soil-like Material:** Inert and construction debris are reused to build roads, strengthen embankments, and level low-lying areas, supporting urban development without extracting new raw material. This helps in reducing the need for fresh sand and soil.
- Construction & Demolition (C&D) Waste:** The waste from **demolished buildings or structures** falls in this category. The waste will be processed into **paver blocks, tiles, bricks, and aggregates**.
- Refuse-Derived Fuel (RDF):** means fuel derived from **combustible** in nature but is not recyclable, such as soiled paper, soiled cloth, contaminated plastics, multilayer packaging materials, other packaging materials, pieces of leather, rubber, tyre, polystyrene (thermocol), wood, etc. The RDF is supplied to **cement factories, waste-to-energy plants, and other industries as an alternative to coal**.
- Recyclables:** **Recyclables include materials** like plastic, paper, metal, glass, and cardboard that are segregated and sorted from mixed waste. These are processed through recycling, where they are reprocessed to create new products.
- Biodegradable Waste:** Biodegradable waste refers to any organic material that can be broken down by **micro-organisms** into simpler, stable compounds. This includes food scraps, kitchen waste, garden waste, and other naturally decomposable materials.
- Only non-reusable rejects:** Sent to **scientific landfills**, not dumped in the open.


This circular approach ensures that legacy dumpsites are eliminated permanently while enabling sustainable resource recovery.

Waste Processing Ecosystem under SBM-Urban 2.0


Strengthening Material Recovery Facilities (MRFs): The mission aims to set up at least one **Material Recovery Facility (MRF)** in each city. At present, there are **2,900 operational MRF plants** with a total capacity of **67,000 TPD**. Additionally, **43,800 TPD of MRF capacity** has been approved under **SBM-U 2.0**. Under SBM-U 2.0, the Ministry of Housing and Urban Affairs (MoHUA) is promoting the **mechanisation of MRFs with capacities above 50 TPD** to reduce manual intervention in waste management practices.

Expansion of Wet Waste Processing and Composting: **Waste-to-compost** plants are strengthening wet waste management across urban areas. Currently, there are **2,800 operational compost plants** with a total capacity of **1.14 lakh TPD**. Under SBM-U 2.0, an **additional composting capacity of 47,200 TPD** has been approved.

Biomethanation and Compressed Biogas (CBG) Plants:
At present, **131 bio-methanation plants** with a cumulative capacity of **4,253 TPD** are operational across the country, while **145 compressed biogas (CBG) plants** with a capacity of **20,155 TPD** are at various stages of implementation.

Way Forward: Cleaner Cities, Healthier Communities

Achieving Zero Dumpsites by 2026 will help **strengthen the foundations of modern urban governance** by embedding scientific waste management into daily municipal operations and **integrating waste pickers and sanitation workers into the formal waste management chain**. The elimination of legacy dumpsites supports the shift from open dumping to **circular waste practices**, contributing to SDG 11 (Sustainable Cities and Communities) and SDG 12 (Responsible Consumption and Production), while reduced methane emissions from unmanaged waste advance SDG 13 (Climate Action).

Over the longer term, the removal of dumpsites will support improved land-use planning, reduced environmental stress, and **healthier urban living conditions**. By enabling cleaner, more resource-efficient, and better-managed cities, Mission Zero Dumpsites contributes to the broader vision of **Viksit Bharat 2047**, where urban growth is aligned with sustainability, productivity, and long-term quality of life.

References

Ministry of Housing and Urban Affairs

<https://static.pib.gov.in/WriteReadData/specifcdocs/documents/2025/nov/doc2025118687701.pdf>
<https://mohua.gov.in/upload/uploadfiles/files/2688HUA-ENGLISH-19-4-2023.pdf>
https://sbmurban.org/storage/app/media/pdf/sbm_knowledge_center/Guidelines_on_Usage_of_RDF_in_various_industries_GIZ.pdf
<https://www.pib.gov.in/PressNoteDetails.aspx?NoteId=155276&ModuleId=3®=3&lang=2>
<https://www.pib.gov.in/PressReleasePage.aspx?PRID=2167622®=3&lang=2>
https://swachhbharatmission.ddws.gov.in/sites/default/files/Technical-Notes/10Years_of_SBM_Brochure.pdf
<https://mohua.gov.in/upload/uploadfiles/files/Part1%281%29.pdf>
<https://mohua.gov.in/pdf/627b8318adf18Circular-Economy-in-waste-management-FINAL.pdf>
<https://www.pib.gov.in/PressReleaselframePage.aspx?PRID=2028814®=3&lang=2>
<https://sbmurban.org/storage/app/media/pdf/SBM%20Advisory%20on%20Landfill%20Reclamation.pdf>
<https://static.pib.gov.in/WriteReadData/specifcdocs/documents/2025/nov/doc2025118687601.pdf>
<https://sbmurban.org/storage/app/media/e-library/Guidelines/Policy%20Guidelines%20on%20use%20of%20inert%20material%20in%20construction%20of%20National%20highways.pdf>

SBM Dashboard: <https://sbmurban.org/swachh-bharat-mission-progess>

Central Pollution Control Board

https://cpcb.nic.in/uploads/LegacyWasteBiomining_guidelines_29.04.2019.pdf

Ministry of Environment, Forest and Climate Change

<https://sansad.in/getFile/loksabhaquestions/annex/1711/AU4229.pdf?source=pqals>
https://cpcb.nic.in/uploads/hwmd/MoEFCC_guidelines_contaminatedsites.pdf

Niti Ayog

<https://www.pib.gov.in/PressReleasePage.aspx?PRID=2032857®=3&lang=2>
<https://www.niti.gov.in/sites/default/files/2021-12/Waste-Wise-Cities.pdf>

Ministry of Personnel, Public Grievances and Pensions

https://darpg.gov.in/sites/default/files/CSD-2023/Circular_Economyt.pdf#:~:text=INTRODUCTION.%20The%20Circular%20Economy%20refers%20to%20an,Recycle%2C%20Refurbishment%2C%20Recover%2C%20and%20Repairing%20of%20materials.

PIB Research